Existence of positive solution for a third-order three-point BVP with sign-changing Green’s function

نویسندگان

  • Xing-Long Li
  • Jian-Ping Sun
چکیده

By using the Guo-Krasnoselskii fixed point theorem, we investigate the following thirdorder three-point boundary value problem

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Positive Solutions for a Third-order Three-point Bvp with Sign-changing Green’s Function

This article concerns the third-order three-point boundary-value problem u′′′(t) = f(t, u(t)), t ∈ [0, 1], u′(0) = u(1) = u′′(η) = 0. Although the corresponding Green’s function is sign-changing, we still obtain the existence of at least 2m−1 positive solutions for arbitrary positive integer m under suitable conditions on f .

متن کامل

Triple Positive Solutions for a Third-order Three-point Boundary Value Problem with Sign-changing Green’s Function

In this paper, we discuss the existence of triple positive solutions for a third-order three-point boundary value problem { u′′′(t) = f(t, u(t)), t ∈ (0, 1), u′(0) = 0, u(1) = αu(η), u′′(η) = 0, where 0 < α < 1, max{ 1+2α 1+4α , 1 2−α} < η < 1. We first study the associated Green’s function and obtain some useful properties. Our main tool is the fixed point theorem due to Avery and Peterson. It...

متن کامل

Third-order Nonlocal Problems with Sign-changing Nonlinearity on Time Scales

We are concerned with the existence and form of positive solutions to a nonlinear third-order three-point nonlocal boundary-value problem on general time scales. Using Green’s functions, we prove the existence of at least one positive solution using the Guo-Krasnoselskii fixed point theorem. Due to the fact that the nonlinearity is allowed to change sign in our formulation, and the novelty of t...

متن کامل

A Singular Third-order 3-point Boundary-value Problem with Nonpositive Green’s Function

We find a Green’s function for the singular third-order three-point BVP u′′′(t) = −a(t)f(t, u(t)), u(0) = u′(1) = u′′(η) = 0 where 0 ≤ η < 1/2. Then we apply the classical Krasnosel’skii’s fixed point theorem for finding solutions in a cone. Although this problem Green’s function is not positive, the obtained solution is still positive and increasing. Our techniques rely on a combination of a f...

متن کامل

Positive Solution to a Singular p-Laplacian BVP with Sign-Changing Nonlinearity Involving Derivative on Time Scales

Let T be a time scale such that 0, T ∈ T. By using a monotone iterative method, we present some existence criteria for positive solution of a multiple point general Dirichlet-Robin BVP on time scales with the singular sign-changing nonlinearity. These results are even new for the corresponding differential T R and difference equation T Z as well as in general time scales setting. As an applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013